Measurements and predictions of subsidence induced by soil consolidation using persistent scatterer InSAR and a hyperbolic model

Sang-Wan Kim,1,2 Shimon Wdowinski,1 Timothy H. Dixon,1 Falk Amelung,1 Jeong Woo Kim,3 and Joong-Sun Won4

Received 3 November 2009; revised 11 January 2010; accepted 27 January 2010; published 11 March 2010.

A space-borne SAR interferometric technique is presented for measuring and predicting ground subsidence associated with soil consolidation. Instead of a conventional constant velocity model, a hyperbolic model is introduced for persistent scatterer SAR interferometry (PSI) processing. Twenty-three JERS-1 SAR acquired between 1992 and 1998 were used to measure land subsidence in Mokpo city, Korea, which had been primarily built on land reclaimed from the sea. Two subsidence field maps were derived and compared: a constant velocity model and a hyperbolic model. Nonlinear components depending on the stage of soil consolidation are well represented by the hyperbolic model. The maximum subsidence velocity reaches over 6 cm/yr, while the maximum acceleration is about −0.3 to −0.4 cm/year. The predicted subsidence rate with the new model was validated by using later ENVISAT SAR data for 2004–2005. Prediction accuracy with the non-linear model is improved significantly, indicating the importance of a physically-based deformation model. Citation: Kim, S.-W., S. Wdowinski, T. H. Dixon, F. Amelung, J. W. Kim, and J.-S. Won (2010), Measurements and predictions of subsidence induced by soil consolidation using persistent scatterer InSAR and a hyperbolic model, Geophys. Res. Lett., 37, L05304, doi:10.1029/2009GL041644.

1. Introduction

Ground subsidence in urban areas is induced by various processes including a withdrawal of groundwater, oil or natural gas, underground excavation, mining, or tectonic motion [Cabral-Cano et al., 2008; Galloway et al., 1999; Hu et al., 2004]. The land subsidence often results in severe and extensive damage to civil infrastructure. In coastal cities where land elevation is close to sea level, subsidence enhances susceptibility to flooding as shown when New Orleans was flooded during Hurricane Katrina [Dixon et al., 2006].

In urban areas, differential SAR interferometry (DInSAR) and persistent scatterer SAR interferometry (PSI) have been used to monitor ground subsidence. The PSI technique has been developed more recently and applied to monitor slow but consistent ground subsidence [Ferretti et al., 2001]. PSI has advantages that include fewer limitations with respect to baseline and temporal decorrelation, correction for atmospheric effects, and the ability to generate time series of deformation.

In most PSI applications, surface deformation has been simplified as a temporally linear deformation or a sinusoidal periodic deformation [Colesanti et al., 2003; Ferretti et al., 2000; Kampes and Hanssen, 2004]. However, aquifer system compaction associated with ground water withdrawal, or organic soil drainage, often causes steady but decreasing ground subsidence with time, as compaction limits are reached [Terzaghi, 1925]. In reclaimed land, initially rapid subsidence also decreases with time as the soil consolidation process proceeds. DInSAR was successfully applied to measuring subsidence in reclaimed lands and magnetic extensometer measurements were used for comparison [Kim et al., 2005]. In this study, surface deformation induced by soil consolidation is mapped and predicted by using PSI. Instead of a constant velocity model, we use a hyperbolic model for the PSI measurements and corresponding predictions of soil consolidation. Twenty-three JERS-1 SAR images acquired between 1992 and 1998 were used to estimate the land subsidence rate and build a hyperbolic prediction model for the city of Mokpo, Korea. The city is vulnerable to significant subsidence because about 70% of the city area consists of land reclaimed from the sea. The hyperbolic subsidence model is validated by using it to predict subsequent ENVISAT SAR measurements taken during 2004–2005.

2. Method

The phase of topographically corrected interferogram, φ_{x,i}, at the location, x, of the ith interferometric pair is described by:

$$\phi_{x,i} = \phi_{dof,x,i} + \phi_{topo,x,i} + \phi_{cont,x,i} + \phi_{slopec,x,i} + \phi_{atm,x,i} + \phi_{noise,x,i}$$

where \(\phi_{const}\), \(\phi_{slopec}\), and \(\phi_{atm}\) (the sum of three components is called APS) are respectively constant phase values, linear phase contributions induced by atmospheric effects and/or orbital fringes, and nonlinear atmospheric effects. The \(\phi_{dof,x,i}\) and \(\phi_{topo,x,i}\) are phase contributions from ground deformation and DEM error (\(\varepsilon\)) at each ground target, respectively. From selected potential persistent scatterers (PPSs) based on amplitude stability or coherence stability, the APS is estimated by means of exploiting time
where \(t_i \) is a time interval with respect to the reference image, and \(v_a \) and \(v_b \) are site specific constants constrained by time-series phase measurements. When \(v_b \) is zero in the equation (2), it represents a constant velocity model (or a linear subsidence model) whose velocity is \(1/v_a \). Three unknown parameters, \(v_a, v_b, \) and \(\varepsilon \) (DEM error) can be solved by maximizing the following equation in three-dimensional model space:

\[
\Gamma(v_a, v_b, \varepsilon) = \frac{1}{n} \sum_{i=1}^{n} e^{(\phi_{o,i} - \phi_{defo,i} - \phi_{arc})},
\]

\(n \) = the number of pairs.

The phase coherence (\(\Gamma \)), ranging from 0 to 1, is considered as a reliability measure in fitting a deformation model. Since the uncertainty of estimated parameters increases as the number of unknown parameters increases, we need a large number of dataset or to limit the range of time variable velocity, \(v_b \), based on a prior knowledge of the displacement velocity.

\[\text{(5)} \] An approximation to the hyperbolic model of equation (2) can be derived by a Taylor series to obtain

\[
\text{Defo}(t) = f(t_c) + (t - t_c) \cdot f'(t_c) + \ldots
\]

\[
= \frac{1}{v_a} (t - t_c) - \frac{v_b}{v_a^2} (t - t_c)^2 + \ldots
\]

The first term on the right-hand side, \(1/v_a \), is considered as a primary velocity or constant velocity term as the average velocity throughout the time series in the middle of observation period, \(t_c \). The second term, \(v_b/v_a^2 \), is a linear velocity rate (or a acceleration). By introducing the approximation, we can separate a quadratic subsiding component from the conventional linear component, which is useful for visual display of the hyperbolic model results.

3. Application Results

3.1. Data Set and Processing

\[\text{(6)} \] The hyperbolic model algorithm was applied to the city of Mokpo (~5 \times 5 km) located on the south western coast of Korea. Large areas within the city are subjected to significant subsidence caused by soil consolidation, because the city was built on a land reclaimed from the sea since the early 1920s. The distribution of reclaimed area is shown in Figure 1. Due to rapid subsidence, several places in the city have suffered significant damages in the past.

\[\text{(7)} \] The JERS-1 L-band SAR satellite acquired a significant number of data over the Korean Peninsula. We obtained twenty three JERS-1 SAR scenes (path: 88, row: 242) from September 1992 to October 1998. Twenty two interferograms were formed with respect to a reference image acquired on March 24, 1996, which was selected by considering spatial baselines and time intervals. Maximum perpendicular baseline component was about 3 km. Because of inaccurate orbit information for JERS-1, a baseline optimization was performed before PSI application. The inaccurate baseline of JERS-1 SAR was corrected by using the digital elevation model (DEM) and removing long wavelength’s residual fringe. To remove the topographic contribution in the interferometric phase, the SRTM 3-arc DEM (~90-m spacing) was used. After eliminating APS using

![Figure 1](image-url)
and soil consolidation is at the point B ≥ (−a and DEM error estimated during PSI processing Temporal behaviors of the subsidence measured 11 Sep 2005) with a time span of v0.8) with an average density of 371/km (see equation (2)) at the point B is zero, consequently the conventional constant velocity model \[\text{velocity field, we selected two PSs (Figure 1b) enables us to predict the non- \text{varying velocity component. Considering the models displayed in Figure 2 the subsidence velocity at the point A will be less than the point B after December 1999. This effect would be evident in any subsidence analysis conducted after 2000.} \]

3.3. Verification of Predicted Deformation

[14] Ground truth data are unfortunately unavailable even though the subsidence has been consistently reported in the study area while ENVISAT SAR datasets were acquired along descending orbits in the time span from 2004 to 2005. Therefore we explored displacement values derived from ENVISAT interferograms, then compared them to model calculations based on the previous PSI results based on JERS-1 data from 1992–1998 (see Figure 1). Figure 3a presents subsidence calculated from ENVISAT interferometric pair (31 Oct 2004 – 11 Sep 2005) with a time span of 315 days. Displacements for radar line-of-sight (LOS) direction of ENVISAT are converted to subsidence values taking into account incidence angle of 24.8° under the assumption of pure vertical movements. Although the incidence angle between JERS and ENVISAT measurements differ by 12.5°, the measurement errors related to the incidence angle difference can be disregarded because the horizontal component error budget is less than 20% (+ sin 37.3° – sin 24.8°). In any case soil consolidation is expected to dominate the subsidence in the study area.

[15] Both the linear model (i.e., constant velocity) and hyperbolic model were used for the comparison. Using these two models, we calculated the expected soil consolidation during the time span of ENVISAT data acquisitions (Figures 3c and 3e). The southern area shows similar deformation values in the two model results because the time-varying component of deformation is not significant (see Figure 1b). Conversely, large differences of deformation predicted by the two models are evident in the northwestern area, where the time-varying component is large. Residual maps (Figures 3d and 3f) between ENVISAT
observation and two models clearly show significant improvement in hyperbolic model in terms of a prediction of subsidence due to soil consolidation. Figure 3b displays residuals of the two models along the profile A–A′. While deviations from the hyperbolic model (blue line) are less than 1 cm, those from constant velocity model (red line) are larger and exceed 2 cm in some parts. The mean and standard deviation of the residuals are summarized in Table 1. Significant improvements are evident in the northwestern area. The residual means were improved from −1.0 cm to −0.5 cm, and the standard deviations decreased from 1.1 cm to 0.7 cm. For the overall area, the hyperbolic model shows better results than the linear model. In summary, the hyperbolic model in association with PSI measurements more effectively predicts soil consolidation than the conventional constant velocity model.

4. Conclusions

[16] Subsidence induced by soil consolidation in Mokpo city, Korea during 1992–1998 was estimated using the JERS-1 PSI. A hyperbolic model was adopted as the priori model for the relative phase of persistent scatterer, and compared to a more conventional constant velocity model. The hyperbolic model is composed of a linear displacement and time-varying component of deformation. The primary velocity component of hyperbolic model agrees well with the constant velocity model. The time-varying component is

<table>
<thead>
<tr>
<th>Model</th>
<th>Overall Area</th>
<th>Southern Area</th>
<th>Northwestern</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean Velocity (cm)</td>
<td>STD (cm)</td>
<td>Mean Velocity (cm)</td>
</tr>
<tr>
<td>Linear model</td>
<td>−0.29</td>
<td>0.88</td>
<td>−0.20</td>
</tr>
<tr>
<td>Hyperbolic model</td>
<td>−0.11</td>
<td>0.68</td>
<td>0.01</td>
</tr>
</tbody>
</table>
associated with aquifer system compaction and slow deceleration of ground subsidence. The result was validated by using ENVISAT SAR measurements acquired during 2004–2005.

[17] By exploiting a hyperbolic model, we are able to more precisely predict future subsidence, as well as to build a better velocity field during the period of SAR observation. We conclude that the PSI technique coupled with a hyperbolic model is a valuable tool for monitoring long-term land subsidence characterized by time varying subsidence rate, which may be characteristic of soil consolidation or aquifer system compaction. The derived settlement map can be used for defining and forecasting possible hazard zones associated with subsidence.

Acknowledgments. We thank NASA and ONR for support. The research was supported by the National Research Lab. Project (M1-0302-00-0063) of Korea Ministry of Science and Technology. This work was also supported by the Korea Research Foundation grant (KRF-2009-013-C00051). CSTARS contribution 26.

References

F. Amelung, T. H. Dixon, S.-W. Kim, and S. Wdowinski, Division of Marine Geology and Geophysics, University of Miami, Miami, FL, 33149–1098, USA. (skim@rsmas.miami.edu)

J. W. Kim, Department of Geomatics Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada.

J.-S. Won, Department of Earth System Sciences, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120–749, South Korea.