GPS estimate of relative motion between the Caribbean and South American plates, and geologic implications for Trinidad and Venezuela

Geology 2001;29:75-78
GPS estimate of relative motion between the Caribbean and South American plates, and geologic implications for Trinidad and Venezuela

John C. Weber*
Department of Geology, Grand Valley State University, Allendale, Michigan 49401, USA
Timothy H. Dixon
Rosenstiel School of Marine and Atmospheric Science—MGG, University of Miami, Miami, Florida 33149, USA
Charles DeMets
Department of Geology and Geophysics, University of Wisconsin, Madison, Wisconsin 53706, USA
William B. Ambeh*
Seismic Research Unit, University of the West Indies, St. Augustine, Trinidad
Pamela Jansma*
Glen Mattioli
Department of Geology, University of Puerto Rico at Mayaguez, Mayaguez, Puerto Rico
Jarir Saleh*
Department of Land Surveying and Information, University of the West Indies, St. Augustine, Trinidad
Giovanni Sella
Department of Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana 70803, USA
Roger Bilham
Cooperative Institute for Research in Environmental Science, University of Colorado, Boulder, Colorado 80309, USA
Omar Pérez
Universidad Simón Bolívar, Caracas, Venezuela

ABSTRACT

Global Positioning System (GPS) data from eight sites on the Caribbean plate and five sites on the South American plate were inverted to derive an angular velocity vector describing present-day relative plate motion. Both the Caribbean and South American velocity data fit rigid-plate models to within ±1–2 mm/yr, the GPS velocity uncertainty. The Caribbean plate moves approximately due east relative to South America at a rate of ~20 mm/yr along most of the plate boundary, significantly faster than the NUVEL-1A model prediction, but with similar azimuth. Pure wrenching is concentrated along the approximately east-striking, seismic, El Pilar fault in Venezuela. In contrast, transpression occurs along the 068°-trending Central Range (Warm Springs) fault in Trinidad, which is aseismic, possibly locked, and oblique to local plate motion.

Keywords: plate tectonics, neotectonics, Global Positioning System (GPS), Caribbean, South America, Trinidad, Venezuela, seismic hazard.

INTRODUCTION

The relative motion between the Caribbean and South American plates is poorly resolved in existing plate kinematic models (DeMets et al., 1990, 1994; Stein et al., 1993; Deng and Sykes, 1995) and neotectonic models based mainly on continental geology (Robertson and Burke, 1989; Speed, 1985; Algar and Pindell, 1994; Flinch et al., 1999). In NUVEL-1A (DeMets et al., 1990, 1994), the most precise geologic model of global plate motion currently available, the Caribbean–South American relative angular-velocity (Euler) vector is the most poorly determined of all global plate pairs; consequently, it has the highest uncertainty. Earthquakes in the Caribbean–South American plate-boundary zone provide some directional plate-motion information, but large upper-crustal events are few and unevenly distributed, whereas more numerous smaller events give very scattered results (Russo et al., 1993), reflecting a mix of plate motion as well as local tectonic processes (Deng and Sykes, 1995). Furthermore, transtension, transpression, and pure wrenching have all been proposed as the current deformation styles within the Caribbean–South American plate boundary zone.

We report the first geodetic estimate of Caribbean–South American relative motion based on data from eight Global Positioning System (GPS) sites on the Caribbean plate and five GPS sites on the South American plate. Velocity residuals and \(\chi^2 \) misfits are used to test for Caribbean plate rigidity and possible plate-edge effects. We compare the results with previous plate kinematic models and large earthquake slip vectors and discuss geologic implications.

DATA ANALYSIS

Continuous and campaign-style GPS data were analyzed at the University of Miami following Dixon et al. (1997). We used the GIPSY software developed at the Jet Propulsion...
TABLE 1. SITE LOCATIONS, OBSERVED AND RESIDUAL VELOCITIES

<table>
<thead>
<tr>
<th>Lat</th>
<th>Long</th>
<th>Observed</th>
<th>Residual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(°N)</td>
<td>(°E)</td>
<td>North</td>
</tr>
<tr>
<td>Caribbean four-site rigid-plate model; χ^2 misfit $= 1.47$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVE5 (Aves Is.)</td>
<td>15.67</td>
<td>63.62</td>
<td>11.5 ± 0.9</td>
</tr>
<tr>
<td>CRO1 (St. Croix)</td>
<td>17.76</td>
<td>64.58</td>
<td>10.9 ± 0.5</td>
</tr>
<tr>
<td>ROJO (D.R.)</td>
<td>17.90</td>
<td>71.87</td>
<td>8.2 ± 0.9</td>
</tr>
<tr>
<td>SANA (San Andres Is.)</td>
<td>12.52</td>
<td>81.73</td>
<td>4.8 ± 0.9</td>
</tr>
<tr>
<td>Caribbean eight-site rigid-plate model; χ^2 misfit $= 0.94$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AVE5 (Aves Is.)</td>
<td>15.67</td>
<td>63.62</td>
<td>11.5 ± 0.9</td>
</tr>
<tr>
<td>BARB (Barbados)</td>
<td>13.09</td>
<td>59.61</td>
<td>13.0 ± 1.1</td>
</tr>
<tr>
<td>CRO1 (St. Croix)</td>
<td>17.76</td>
<td>64.58</td>
<td>10.9 ± 0.5</td>
</tr>
<tr>
<td>ISAB (P.R.)</td>
<td>18.46</td>
<td>67.05</td>
<td>9.3 ± 1.4</td>
</tr>
<tr>
<td>PURS (P.R.)</td>
<td>18.46</td>
<td>67.07</td>
<td>9.7 ± 0.9</td>
</tr>
<tr>
<td>ROJO (D.R.)</td>
<td>17.90</td>
<td>71.87</td>
<td>8.2 ± 0.9</td>
</tr>
<tr>
<td>SANA (San Andres Is.)</td>
<td>12.52</td>
<td>81.73</td>
<td>4.8 ± 0.9</td>
</tr>
<tr>
<td>TDADP (Trinidad)</td>
<td>10.68</td>
<td>61.40</td>
<td>10.7 ± 1.4</td>
</tr>
<tr>
<td>South American rigid-plate model; χ^2 misfit $= 0.77$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASC1 (Ascension Is.)</td>
<td>−7.95</td>
<td>−14.41</td>
<td>8.8 ± 1.5</td>
</tr>
<tr>
<td>BRAZ (Brazil)</td>
<td>−15.95</td>
<td>−47.88</td>
<td>11.3 ± 1.1</td>
</tr>
<tr>
<td>FORT (Brazil)</td>
<td>−3.88</td>
<td>−38.43</td>
<td>11.5 ± 0.9</td>
</tr>
<tr>
<td>KOUR (Fr. Guyana)</td>
<td>5.25</td>
<td>−52.81</td>
<td>10.0 ± 0.8</td>
</tr>
<tr>
<td>LPGS (Argentina)</td>
<td>−34.91</td>
<td>−57.93</td>
<td>11.0 ± 1.2</td>
</tr>
</tbody>
</table>

Note: D.R. = Dominican Republic; P.R. = Puerto Rico.
*Velocities (mm/yr) relative to ITRF-97.
Residual velocities (mm/yr), observed minus predicted, based on best fit ITRF-97 angular velocity vectors (Table 2).
Residual velocities (mm/yr) observed minus predicted, based on best fit ITRF-97 angular velocity vectors (Table 2).

Figure 1. Map showing locations and motions (observed—black; predicted—red) of sites on Caribbean and South American plates relative to the stable South American reference frame defined in this study. Error ellipses and site names omitted on Caribbean plate for clarity. Small black arrows and error ellipses indicate statistically insignificant residual South American site motions. See Table 1 for site names and locations.

RIGIDITY OF THE CARIBBEAN AND SOUTH AMERICAN PLATES

Dixon et al. (1996) used residuals between GPS-determined velocities and those predicted by a rigid-plate model to investigate the rigidity of the North American plate interior. In that study, the average rate residual for eight North American stations was 1.3 mm/yr. Using a larger data set and longer time series, DeMets and Dixon (1999) determined an average rate residual of 1.0 mm/yr for 16 stable North America stations. These residuals probably reflect the magnitude of GPS velocity errors, rather than true nonrigid plate processes. In the later study, the velocity errors were independently estimated following Mao et al. (1999), and χ^2 per degree of freedom (χ^2), a parameter describing the goodness-of-fit of the data to the rigid-plate model, was approximately unity, as expected if the model is appropriate and the errors are realistic. We applied the same velocity error model and the same rigidity tests to our Caribbean and South American data sets. The mean rate residuals are, respectively, 1.3 mm/yr for the four-site Caribbean plate model ($\chi^2 = 1.47$), 1.5 mm/yr for the eight-site Caribbean plate model ($\chi^2 = 0.94$), and 1.6 mm/yr for the South American plate model ($\chi^2 = 0.77$). These re-
TABLE 2. ANGULAR-VELOCITY VECTORS DESCRIBING RELATIVE MOTION BETWEEN THE CARIBBEAN AND SOUTH AMERICAN PLATES

<table>
<thead>
<tr>
<th>Lat (°N)</th>
<th>Long (°E)</th>
<th>ω (°/m.y.)</th>
<th>Error ellipse*</th>
<th>σωmax</th>
<th>σωmin</th>
<th>σωmax (°/m.y.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This study</td>
<td>four-site Caribbean</td>
<td>52.1</td>
<td>−65.9</td>
<td>0.271</td>
<td>7.5</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>eight-site Caribbean</td>
<td>51.5</td>
<td>−65.7</td>
<td>0.272</td>
<td>6.1</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>NUVEL-1A*</td>
<td>50.0</td>
<td>−65.3</td>
<td>0.18</td>
<td>14.9</td>
<td>4.3</td>
</tr>
<tr>
<td></td>
<td>NUVEL-1 (alt.)*</td>
<td>63.1</td>
<td>−15.2</td>
<td>0.13</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Deng and Sykes*</td>
<td>92</td>
<td>−81</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DeMets et al. (1994).</td>
<td>50.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

* Error ellipse * ωmin is orientation of long axis, degrees clockwise from north. Axes are two-dimensional one standard error; for 95% confidence, multiply by 1.7.

AVES, ISAB, ROJO, SANA, TDAD) that have been occupied periodically, and continuous stations (CR01, BARB, PUR3) similar to those operating in South America but with slightly shorter time spans, are equally small (Table 1). These new high-precision Caribbean velocity data do not support models involving two or more Caribbean “subplates” (e.g., Dewey and Pindell, 1985; Mauffret and Leroy, 1997). The small uncertainties and residuals permit semi-independent motion between blocks or microplates only up to about 2 mm/yr.

Because the four-site and eight-site Caribbean plate models give nearly identical results (Table 1), elastic effects at the four Caribbean “edge” sites must be small. This suggestion is consistent with independent mechanical models that estimate the magnitude of elastic-strain accumulation. For example, a simple elastic half-space model (Savage, 1983) for strain accumulation along the Lesser Antilles subduction-zone interface between the Caribbean and South American plates, assuming 50% locking, predicts elastic velocity effects at BARB (Table 1, Fig. 1) that are less than 1 mm/yr. This result is probably an upper limit, because the 50% plate coupling assumed is a maximum value given the relatively old age of subducting South American oceanic lithosphere at this location (Stein et al., 1982).

COMPARISON OF ANGULAR-VELOCITY VECTORS AND GEOLOGIC IMPLICATIONS

Our new Caribbean–South American angular-velocity vectors and, for comparison, those of DeMets et al. (1994) and Deng and Sykes (1995), are presented in Table 2 and Figure 2. The new Caribbean–South American angular velocity vectors based on four and eight Caribbean sites are equivalent within uncertainties. In the following discussion, we use the vector based on the larger data set, because it has approximately the same mean rate residual and a significantly lower χ² misfit (Table 2).

Figure 2: Predicted Caribbean–South American velocity azimuth (degrees clockwise from north) along plate boundary zone in northern South America and Trinidad at 10.5°N from this (thick lines; solid line is for eight-site Caribbean rigid-plate model; dashed line is for four-site Caribbean rigid-plate model) and previous (thin lines) studies. Four-site and eight-site Caribbean rigid-plate models both predict constant velocity magnitude of ~20 mm/yr across this region. Dots are slip-vector azimuths for large, upper crustal earthquakes. Numbers are event numbers in Deng and Sykes (1995) Table 1. DVD is slip vector from Doser and Van Dusen (1996) for 1929 magnitude 6.9 Cumana earthquake. Harvard CMT and Berkeley determinations for July 9, 1997, magnitude 6.8 Cariaco event and Harvard CMT determination for a December 26, 1996, event are labeled. Model labeled “Alternate DeMets et al. (1990)” omits earthquake slip vectors in Lesser Antilles. Note that Central Range fault segment of plate boundary zone in Trinidad (~61°–62°W) is aseismic, whereas El Pilar fault segment in Venezuela (~62°–65°W) is seismically active.
historical event (Doser and Van Dusen, 1996). These data provide independent azimuthal information with which to evaluate our new angular-velocity vector, and they agree with it quite well (Fig. 2).

Robertson and Burke (1989) used geologic data to infer that the Caribbean–South American plate boundary zone is several hundred kilometers wide in Trinidad and along northern South America. Weber et al. (1999) compared 1901–1903 triangulation data to 1994–1995 GPS data at 23 sites in Trinidad and determined that the Central Range (Warm Springs) fault is the major active strike-slip fault in Trinidad, albeit aseismically and possibly locked. Data from two campaign GPS sites in Trinidad provide additional insight. Site TTAD (Table 1) is roughly 35 km north of the Central Range fault, and moves, within errors, at the full Caribbean plate rate (north residual = −1.3 mm/yr, east residual = 1.6 mm/yr). On the other hand, a GPS site in southern Trinidad, about 60 km away (triangulation station 0115), moves 14 ± 3 mm/yr slower toward the east (recall that the predicted plate motion is 20 ± 3 mm/yr). These observations suggest that the Central Range fault currently accommodates most Caribbean–South American plate motion in Trinidad, and that the plate-boundary zone may be narrower than previously thought.

Our new angular-velocity vector predicts motion directed 90° ± 2° along the seismically active approximately east-striking El Pilar fault in Venezuela (Fig. 2) and pure dextral wrenching as the current deformation style there. In contrast, we infer that transpression is active in Trinidad, where the active Central Range fault is highly oblique to plate motion. That 14 ± 3 mm/yr of motion is taken up aseismically across the Central Range fault, both today and historically, implies that this fault may be locked and could constitute a seismic hazard. The general eastward relative Caribbean plate motion we observe compares favorably with the strong approximately east-trending mantle fabric in the plate-boundary zone imaged by Russo et al. (1996) with a seismic-shear-wave-splitting experiment. The presence of a pervasive mantle fabric with this orientation probably indicates that the Caribbean plate has moved in the general direction we observe today for a geologically significant period of time. This inference is supported by the observation that the current plate-motion azimuth measured with GPS is essentially identical to the NUVEL-1A result, which averages over ~3 m.y. In addition, it is consistent with the observation that a probable key boundary condition for Caribbean motion, North America–South America motion, has been steady for at least the past 10 m.y. (e.g., Dixon and Mao, 1997).

ACKNOWLEDGMENTS

We are grateful to the International Geodynamics Service (IGS) and other members of the international geodetic community who generously make high-quality data from permanent GPS stations publicly available in a timely manner. We thank Keith Rowley, Lloyd Lynch, Previn Kennedy, Murchison Pierre, the Decoteau family, Wayne and Stephen Williams, Andrew McCarthy, and many others who helped us make GPS campaign measurements. This work was supported by NASA’s Dynamics of the Solid Earth Program, Contract (Project SI-97001365), the Caltech President’s Fund, and National Science Foundation Postdoctoral Fellowship EAR-9404214 and a Conoco Young Professor’s Award to Weber, who thanks Judith Hannah, Keith James, Tomas Villamil, and James Deckelman for logistical support.

REFERENCES CITED

Algar, S., and Pindell, J., 1994, Structure and deformation of the Northern Range of Trinidad and adjacent areas: Tectonics, v. 12, p. 814–829.

Printed in USA

Manuscript received May 12, 2000 Revised manuscript received October 9, 2000 Manuscript accepted October 9, 2000

GEOLOGY, January 2001